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» Methods for estimating the carbon payback time (CPBT) and
energy payback time (EPBT) of photovoltaic systems often
use average annual energy generation in the calculation

* We examine tradeoffs for a 100-MW, utility PV system
installed in the United States

« CPBT & EPBT methods presented here also apply to any
other environmental assessments with non-linear temporal
data

Overview




Definitions

PV Modules

Combiner Box

Energy payback time (EPBT):

the time required for a PV system to generate the same amount of
energy used during system manufacturing, operation, and disposal

Carbon payback time (CPBT):

the time required for a PV system to offset the amount of carbon
emitted over its life cycle, by displacing more carbon-intensive
electricity which would have otherwise been used locally
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Foreground processes
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2024 U.S. Utility PV LCA Report

Scan QR code for the full
technical report from NREL
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An Updated Life Cycle Assessment of
Utility-Scale Solar Photovoltaic
Systems Installed in the United States

Brittany L. Smith, Ashok Sekar, Heather Mirletz,
Garvin Heath, and Robert Margolis

NREL is a national laboratory of the U.S. Department of Energy Technical Report
Office of Energy Efficiency & Renewable Energy NREL/TP-7A40-87372
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“Average
Annual”
method

Non-linear
method

(Cmanuf + Cinst + Cuse + CEOL)

(2y(Eageny X EFgy))
Y

CPBT =

Cmanus 18 GHG emitted (in g CO,¢) to manufacture PV system

Cinst 1s GHG emitted (in g CO,e) during construction and installation of the system

Cror 1s GHG emitted (in g CO,e) during end-of-life management

Cyse 1s GHG emitted (in g CO,e) during operation and maintenance

Eqgen,y 18 annual electricity generated by the plant (in kWh) each year of its life, y

EFg 5 is emission factor of the grid (g CO,e per kilowatt-hour of electricity) for each year, y

Solve for the minimum y value that satisfies the following inequality:

(Cmanuf + Cinst + Cuse + CEOL) < Z(Eagen,y X EFG,y); y = {O; 1; 2; }
y
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Carbon Emissions (kgCO, )

Comparing methods
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Carbon Emissions (kgCO, )

Comparing methods
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Input Data & Scenarios

EPBT

Energy yield: NREL System
Advisor Model (SAM)

Irradiation scenarios:

— Mid-case:
Fredonia, Kansas

— Low irradiation:
Seattle, Washington

— High irradiation:
Phoenix, Arizona

CPBT

Grid emission factors: NETL Grid Mix Explorer
Grid mix projections: NREL Cambium Scenarios

— Mid-case: Fredonia, KS

— High CPBT: Seattle, WA
e Low irradiation
* Low grid emission area (offsets low-emitting grid)
* NREL Cambium Scenario: low renewable energy costs

— Low CPBT: Phoenix, AZ
e High irradiation
* High grid emission area (offsets high-emitting grid)
* NREL Cambium Scenario: high renewable energy costs
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Add annual
avoided
emissions
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A: 0.9 years

B: 2.1 years

C: 20 years
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EPBT
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Scenario & method sensitivity analysis

For the Kansas mid-case, the “average annual” method gives a CPBT of 7 years
— >3x the non-linear method CPBT of 2.1 years

Importance of installation location effects on CPBT:

* PV systems with modules from high-carbon regions achieve CPBTs <4 years for
both the high-irradiance/high-emission location (Phoenix) and the mid-
irradiance/mid-emission location (Fredonia)

* The effects of the grid mix projection in Seattle were minimal: applying a high
future renewable cost scenario for Seattle only reduced the CPBT of systems
with high-carbon imported modules to 19 years (5% decrease)

* Conversely, applying a low future renewable cost for Phoenix increases the
CPBT to 1.3 years (44% increase)
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U.S. Utility PV
EPBT & CPBT

Fact Sheet

Scan QR code for the
fact sheet from NREL

The 1MW photovoltaic amay at the Flatirans Campus (FC) of the National Renewable Energy Laboratory (NREL). Fhoti by Wemer slocum, NRFL 65207

Energy and Carbon Payback Times for
Modern U.S. Utility Photovoltaic Systems

Solar ph Itaic (PV) technologies are helping
decarbonize the U.S. electricity system by
harnessing a renewable energy source—the
sun. However, manufacturing and operating

a PV system consumes non-renewable energy
and produces carbon emisslons, as does end-
of-life handling when PV systems are eventually
decommissloned. To fully account for PV's
contribution toward decarbonization, these life
cyde Impacts must be quantified.

Impacts over e [ifie of PV systems are quantified using life cycle
assessment (LCA) methods and can be used to estimate eneqgy
and carbon payback times. Fnergy payback time (FPRT) i the
time required for a PV system to generate the same amount

of enangy used during systermn manufacturing, operation, and
disposal. Similarly, carbon payback time ((PBT) i the time
required for a PV systemn to offset the amount of carbon emitted
over its life cyde, by displacing more carbon-intensive electricity
which wiould have olherwise been used locally.

Updated Life Cycle Assessment of
U.S. Utility PV Systems

Arecent | CA from the National Renewable Fnerqy | aboratory
(NRF1) estimated enerqy and carbon payback times for utility
scale PV systorns installed in the United States. Utility-scale
systems account for two thirds of US. PV capacity installed
annually and are typically tens to hundreds of megawatts in
sz The study assessed a Lypical US. ulility-scale PV syslem
installed in 2023 wilh modemns silicon modules, single-axis

trackers, and central inverters, The effects of PV module
manufacturing regions were considered for imported
modules and domestic modules. Pyvaluating installation
lncations across multiple LS. regions show the effects of local
iradiation and grid characteristics on payback times.

Short Energy and Carbon Payback
Times in Most Scenarios

The energy payback times from the NREL study are between
0.5and 1.2 years for utility-scale PV systems in the United
States, as shown in Fiqure 1. The features for the different
system scenarios are reported in Table 1. FPRTS are primarily
affected by the amount of solar radiation and the grid
efficiency where a system is installed. In less than 12 years,
these systerns produce enough electricty to offset all the
energy needed to manufacture them, operate them for

30 years, decommission Lhem, and process wasles.

Energy Payback Time for 100 MW, Utility Systems

Scenano A
Scenano B
SEenano C
az o o2 o4 06 08 1 12
Years
W Module Baance of System Istall & Use End of Liie

Figure 1. Energy Payback Times for Select Uility PV System Scenarios
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