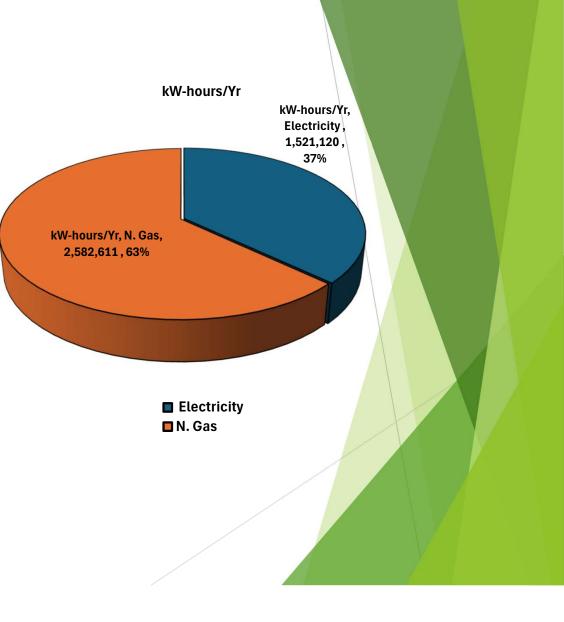
The Practical Implementation of Distributed Solar CHP With Thermal and EV Battery Storage for Schools

- Steven B. Smiley
- American Solar Energy Society
- ASES Solar 2024
- ▶ May 21, 2024
- ▶ Washington, DC


Summary and Background

- This project implementation is based on the framework developed in my ASES paper "Accelerating 100% Renewable Energy Plans" ASES Solar 2023 -that focuses on "mid-scale" community/local utility based solar PV with thermal and electrical storage inside the local electric distribution system.
- Policies and this project are also evaluated based on my conceptual plan, "Emerald City 100% Renewable Energy Plan", ASES Solar 2020 with a ten-year target to increase electric distribution from renewable energy roughly by a factor of three.

Emerald City 100% Renewable Energy Plan 1,000,000,000 Solar Electric 900,000,000 К Other: LP, Biogas, Biofuel 800,000,000 Natural Gas Thermal h 700,000,000 o 600,000,000 Natural Gas-Bio-fuel-Elec u ^{500,000,000} 0 Storage CHP Natural Gas CT Electric r 400,000,000 W Landfill Gas Electric 300,000,000 S 200,000,000 Wind Electric 100,000,000 t Coal Electric ⁴ Years 6^{7} 8 9 0 2 3 10 1

Primary Objectives

- Eliminate fossil gas GHG's
- ▶ 100% Renewable Energy 4 million kW-hrs/yr.
- Maximize solar PV site availability
- Install solar and storage to cover both electric and thermal energy needs, displacing fossil gas and petroleum with electric kWe-hours ("electrification")
- Increase electricity distribution, in this case, 2.74 times present electric consumption
- Lower overall energy costs to school and utility
- Fit into local distribution system substation with limited electric gird upgrades - NO MISO (Mid-Continent Independent System Operator) application requirements.
- Regenerative and distributive Energy Systems (ala "Doughnut Economics")

Policies

- Public Utility / Community / cooperative solar
- Federal direct pay incentive via IRA (no Minnesota flip)
- On-bill financing
- Rebates
- Time of use (TOU) rates high load factor rates
- Unlimited net metering or fair value for mid-scale(1 -10 MW) solar
- Smart grid harmony
- School bonds green bonds
- Account for environmental / GHG / multiplier impacts
- Non-market solutions

More Advantages of Distribution System Solar CHP Generation Policies and Systems

Avoid Market Failures and Limits

- ▶ The imperfect flow of information
- Transaction costs
- The non-existence of markets for some goods
- Market power
- Externalities
- Public goods
- "Make the market your slave, not your master". Frede Hvelplund, Aalborg U.
- "What if at optimal economics we are all dead?" Econ professor Dr. Jeffery Barbour

Reasons For Avoiding "Independent System Operators" MISO, PJM, etc.

- > Transmission access application costs
- Long queues, studies and delays (years)
- Transmission expenses and fees
- Transmission and substation efficiency losses (2% minimum up to 10%)
- Market restrictions and bidding processes
- Loss of local control
- Potential of negative market pricing during oversupply periods, especially with increasing amounts of solar and wind generation.
- NEVER CURTAIL WIND AND SOLAR GENERATION!

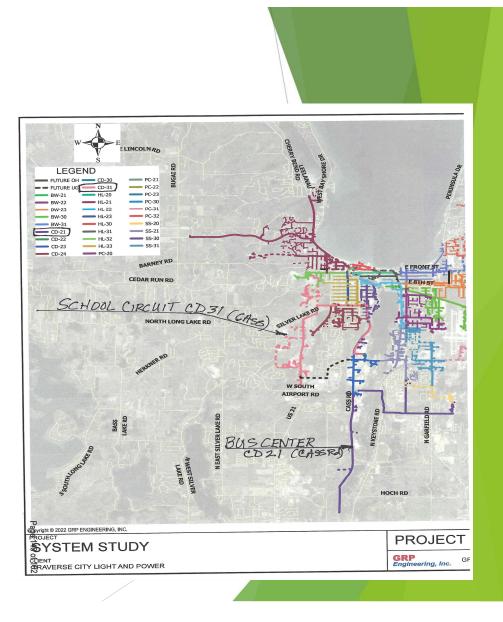
Junior High School - Site and Building Characteristics

- School Campus Property: 90 acres (36 ha)
- Building Roof: 210,000 sq. ft. (19,520 m2) (5 acres or 2 ha)
- Annual Energy Expense: \$284,849
- Present Annual KW-hrs 1,521,120
- Natural gas equivalent kW-hrs -2,582,611 (117,526 ccf)
- Total Building energy kW-hrs 4,103,731 (100% Site target)
- Estimated Bus off-site KW-hrs/yr. 60,300
- Total kW-hrs/yr. W/Buses 4,146,031
- Present peak kW demand 131 kW

Solar PV 100% Annual kW-hours =3400 KW dc

- Solar PV coverage: 23 acres of 90acre site. (9.2 ha of 36 ha)
- Includes:
 - Parking area
 - ► Roofs
 - ► Fields
 - Road edge

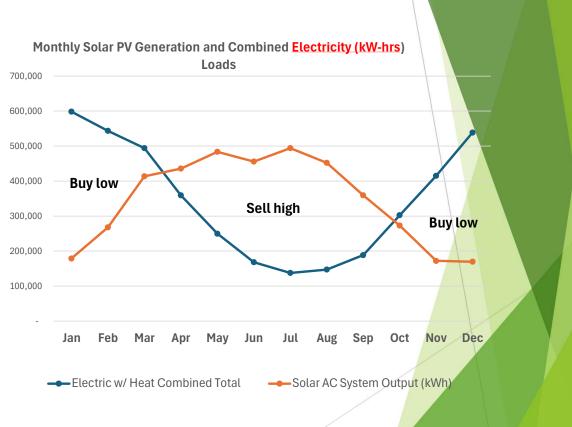
Photo example c/o Big Sun Solar


Solar CHP System

- Micro-grid controls
- Utility "smart grid" for demand management, power quality, etc.
- Fossil gas boilers remain in place, are pre-feed by electric boiler, only remain as back-up and maintenance.
- Variable electric boiler to meet demand and thermal storage as needed, and can act as utility voltage management system, etc.

Electric Distribution Grid

- School on distribution circuit CD 31 ("Cass Road" substation).
- Bus Transportation Center on distribution circuit CD 21 ("Cass Road" substation)


Electric Distribution Transformer Loads

Transformer	Loadir	ng - Peak Summe	er and Ave	rage						
LOAD STUDY DATA FROM ENGINEERING REPORT						SMILEY EXTRAPOLATION OF DATA				
		(a)	(b) Summer Peak Loading	(c)	(d) Net of 100%	(e) Avg Loading at 40/70	(f)	(g) Net of 45% Safety	(h) 45% Avg Load	(i) Avg Net Load at 45%
Substation	Trans	Rating (MVA)	(MVA)	% Max	(MVA)	(MVA)*	% Avg	Factor**	(MVA)	(MVA)
Barlow	#1	13.4/17.9/22.4	6.95	31.0%	15.45	3.97	17.7%	27.3%	10.08	6.11
Barlow	#2	13.4/17.9/22.4	7.54	33.7%	14.86	4.31	19.2%	25.8%	10.08	5.77
Cass	#1	13.4/17.9	7.57	42.3%	10.33	4.33	24.2%	20.8%	8.055	3.73
Cass	#2	13.4/17.9/22.4	11.41	50.9%	10.99	6.52	29.1%	15.9%	10.08	3.56
Parsons	#1	13.4/17.9	7.00	39.1%	10.90	4.00	22.3%	22.7%	8.055	4.06
Parsons	#2	13.4/17.9/22.4	11.58	51.7%	10.82	6.62	29.5%	15.5%	10.08	3.46
Hall	#1	22.4/29.9/37.3	9.57	25.7%	27.73	5.47	14.7%	30.3%	16.785	11.32
Hall	#2	22.4/29.9/37.3	11.03	29.6%	26.27	6.30	16.9%	28.1%	16.785	10.48
South	#1	13.4/17.9/22.4	3.63	16.2%	18.77	2.07	9.3%	35.7%	10.08	8.01
South	#2	13.4/17.9/22.4	4.77	21.3%	17.63	2.73	12.2%	32.8%	10.08	7.35
		244.8	81.05		163.75	46.31	19.5%	25.5%	110.16	63.85
	*40/70 MVA is annual averag 40 MVA compared to summer peak 70 MVA									
	multiplied times the summer peak MVA load.									
	**45 percent is the recommended transformer loading factor to provide 100% backup									
	connecting to adjacent transformers with circuit failures									
965,001,600	kW-hours/year with average loading of 110 MVA at 45% substation safety factor!									
	This is 3 times the present annual consumpion!									
	Cass # 2 and Parsons # 2 are only transformers loaded over 45% at summer peak.									
	The system load study analysis recommends increasing capacity at Cass and Parsons									

- Cass Road Circuits are highest loaded at peak daytime summer periods—but study shows, <u>on average</u>, loads are <30% of transformer capacity (Column f), well below the safety load target of 45%.
- On average, over 3 MWe of(off-peak) electric heating and lighting capacity are available—from the utility.
- With a summer peak load at 50.9%, solar PV during summer peak can offset higher transformer loads.
- Demand management plus storage will also offset summer peak periods
- Thermal storage with variable electric heating controls (f/x Lattner Electric Boilers) can be used for power quality, voltage control, load balancing, extra "high load factor" off peak utility distribution sales.

The Solar PV Solution

- Target solar PV size to generate 100% annual kW-hours - 4,103,731
- 3,400 kW Peak Solar Array's assuming local solar resources
- Solar array's: 23 acres (9.2 ha) of 90acre (36 ha) property, mostly parking lots and building roof area space
- Solar dispatched according to needs:
 - Peak period "peak shaving" to eliminate demand charges (10 AM - 5 PM) 35 hours per week.
 - Peak shave and sell excess summer solar at high value demand periods greatest energy need for utility
 - Importantly, this solar PV system peak capacity represents 10% of the entire utility average MW load, and 5% of the peak summer load!

Key Findings and Conclusions

- Implement a system to manage loads with solar PV, electric heating and storage (thermal and electric) to make the school a "high load factor" consumer (90% +/-) providing for low-cost electricity (<7 cents/kWhour)
- Only draw high load electric heating off-peak (80% of hours)—use energy or put in storage.
- 3,400 KWe peak solar will benefit the entire distribution circuit, not just the school, while 100% of the school's annual energy will be accounted for with solar, trading high value solar for low priced off-peak energy.
- Work inside the utility "distribution" system. Avoid ISO's and IOU's, independent system operators and investor-owned utilities. Avoid the many structural and institutional barriers with IOU's and ISO's.
- Create direct competition between cheap electric RE and natural gas IOU's.
- Create direct competition between cheap electric RE and petroleum, gasoline, diesel, LP gas, fuel oil, etc.
- Make your own local policies; GHG fees, TOU rates, rebates, on-bill financing, net metering, etc.
- <u>Build your own local projects</u>, community solar, commercial wind, fuel switching, smart grid with broadband, energy efficiency, infrastructure upgrades, all with financing. Focus on local ownership versus PPA's.
- <u>Get involve with public power locally</u>: Community engagement is a two-way street.

Thanks for listening Steven B. Smiley

E-mail: smiley27@earthlink.net

Ph: (231) 883-4850 PT