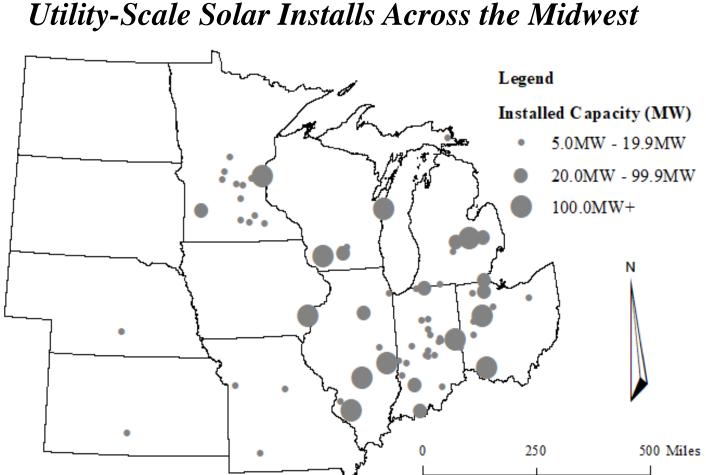


"Investigating Property Value Impacts Near Midwestern Utility-Scale Solar Projects Using Difference-in-Difference Methods"

Sampson Hao, MS & Gilbert Michaud, PhD For more info, contact: sampsonhao@pgrenewables.com

Introduction:


Utility-scale solar project proposals have been accelerating exponentially in the U.S. as the energy transition from fossil fuels to renewables unfolds. While the emissions and economic related benefits of deploying such projects are well documented, relatively less is known about their impact on nearby **property** values. This research investigates the location of utility-scale solar facilities in the Midwest, the average 3-bedroom housing value in the surrounding area, and whether the presence of a utility-scale solar project affects nearby property values in any manner.

Research Objective:

To determine the **association** and **magnitude** of impact between utility-scale solar projects and nearby property values.

Data and Methods:

This study included **70** utility-scale solar facilities (\geq 5MW-DC installed capacity) that became operational in the Midwest from 2009– 2022 using data from the Lawrence Berkley National Laboratory. Alongside housing value data from Zillow, additional data was incorporated, including rurality, county, and state. Both normal housing value and standardized housing value (Case Schiller Index adjusted value) were tested. Three difference-in-difference (DID) models were conducted to determine the results.

Variable Definitions

Variable	Definition
P_{xt}	Housing pricing at zip code x at time t
Treated _{xt}	Binary variable, 1 for the treatment gr
Post _{xt}	Binary variable, 1 for after operation,
$Rurality_{xt}$	Binary variable, 1 for non-metro zip co
	Binary variable, 1 for projects with an
Size _{xt}	20 MW, 0 for projects with an installed
Year _{xt}	Categorical variable, each year is in its
δ_{st}	State fixed effect
δ_{ct}	County fixed effect
δ_{xt}	Zip code fixed effect
С	Constant
E	Standard Error

DID Model Example (State Model)

$$P_{xt} = \beta^{1} * Treated_{xt} + \beta^{2} * (Tr + \beta_{3} * Rurality_{xt} + \beta_{4} * Size_{x} + \delta_{st} + C + E$$

Results:

roup, 0 for the control group 0 for before operation odes, 0 for metro zip codes installed capacity between 5d capacity larger than 20 MW own category

$reated_{xt} * Post_{xt}$ $\gamma_t + \beta_5 * Year_{\chi t}$

DID Property Value Impact CS Adjusted AHV Analysis					
Variables/Models	Model 1: State	Model 2: County	Model 3: Zip Code		
Treated VS Controlled (β_1)	-1,458	-3,338***	Unidentified		
Property Value Impact (β_2)	-662	2,640**	700***		
Rurality (β_3)	-25,563***	-22,166***	Unidentified		
Project Between 5– 20 MW Installed Capacity (β ₄)	13,620***	50,206***	23,200***		
Constant (C)	177,335***	158,793***	143,235***		
Numbers of Observations (n)	5,778	5,778	5,778		
Standard Error (E)	12,472	2,670	2,443		
R ²	0.5642	0.8209	0.9897		
Adjusted R ²	0.5629	0.8197	0.9895		
* p < 0.10; ** p < 0.05; *** p < 0.01					

DID Property Value Impact Normal AHV Analysis

DID I Toperty value Impact Normal MITV Malysis				
Variables/Models	Model 1:	Model 2:	Model 3:	
	State	County	Zip Code	
Treated VS	-2,921***	-2,976***	Unidentified	
Controlled (β_1)	, ,	,		
Property Value	2,004**	1,310**	3,199***	
Impact (β_2)	,	,	,	
Rurality (β_3)	-21,910***	-10,425***	Unidentified	
Project Between 5-	19,492***	779	8,357***	
20 MW Installed	,		,	
Capacity (β_4)				
Constant (C)	94,369***	185,827***	143,235***	
Numbers of	20,815	20,815	20,815	
Observation (n)	,	,	,	
Standard Error (E)	9,985	21,281	18,388	
R ²	0.5880	0.8158	0.9483	
Adjusted R ²	0.5875	0.8151	0.9479	
* p < 0.10; ** p < 0.05; *** p < 0.01				

Conclusions:

-Utility-scale solar projects can increase nearby property values by **0.5–2.0%**

-Smaller projects have more of a positive impact on nearby property values than projects that are $\geq 20 \text{ MW}$

Acknowledgments: Special thanks to the School of Environmental Sustainability at Loyola University Chicago and the graduate thesis committee: Dr. Gilbert Michaud, Dr. Lopa Chakraborti, Dr. Richard (Max) Melstrom, and Dr. Bo Zhang.