Assessment of the window performance from the light provision and circadian light aspects

Neda Ghaeili

Ph.D. Candidate Department of Architectural Engineering, Pennsylvania State University, USA

Shevvaa Beiglary

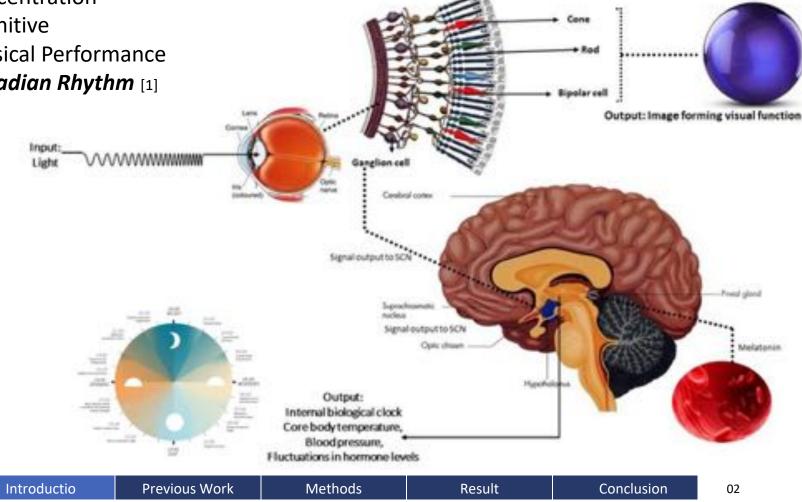
Ph.D. Student Department of Architectural Engineering, Pennsylvania State University, USA

Dr. Julian Wang

Associate Professor

Department of Architectural Engineering, Pennsylvania State University, USA

Dr. Ying-Ling Jao Associate Professor Ross and Carol Nese College of Nursing, Pennsylvania State University, University Park, Pennsylvania, USA



PennState College of Engineering

Introduction: Circadian light and well-being

- Mood •
- Concentration •
- Cognitive ٠
- **Physical Performance** •
- **Circadian Rhythm** [1]

Introduction: Circadian light transmittance

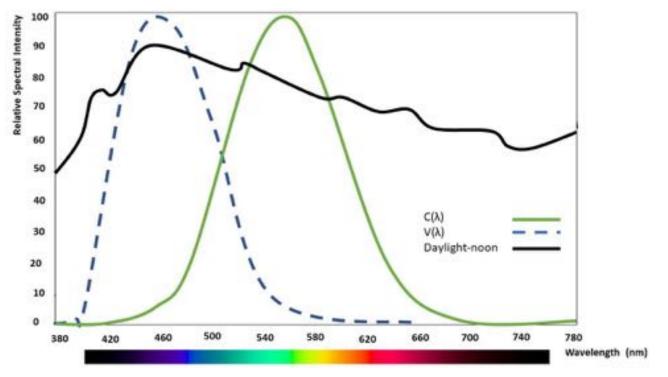
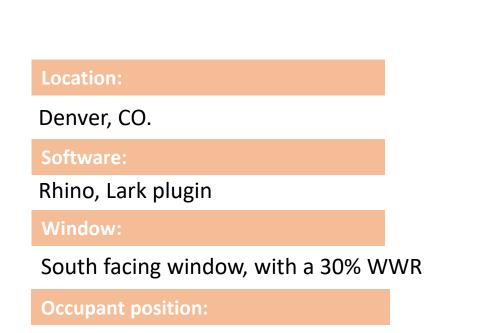


Figure 1. Photopic and melanopic curve

$$T_{c} = \frac{\sum_{380}^{580} D_{\lambda} . T(\lambda) . C(\lambda) . \Delta \lambda}{\sum_{380}^{580} D_{\lambda} . C(\lambda) . \Delta \lambda}$$
[2]


Introduction: Window and Circadian light

Circadian light transmittance and window properties: **Tvis:** High Tvis does not guarantee high circadian light inlet **Window Color** : Blue tinted window inlets more circadian-weighted light [3] **Window to wall ratio** : Up to a certain WWR, a higher WWR allows more circadian light to enter the room [4] **Window direction** : South facing window provides more circadian light [5]

Focus of this research: **Tvis Tc**

Introductio Previous Work	Methods	Result	Conclusion	04
---------------------------	---------	--------	------------	----

Method: Simulation setup

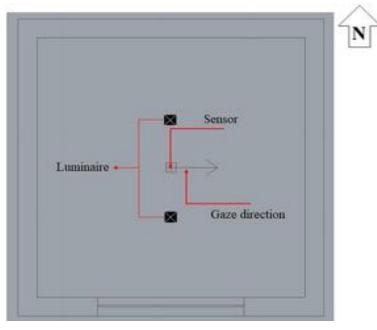
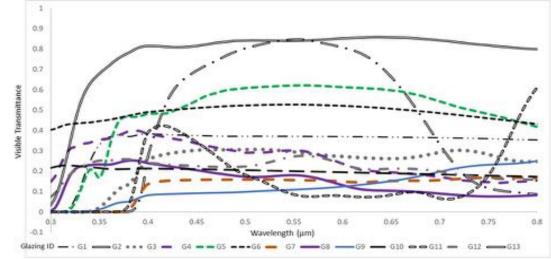


Figure 2. Plan view of simulation setting


With the 120 cm height in the middle of the room facing parallel to the window orientation

Simulation period & Metrics :

9a.m. to 1 p.m., m_EDI

Introductio Previous Work	Methods	Result	Conclusion	05
---------------------------	---------	--------	------------	----

Method: Window Selection Strategies

Table1. Properties of chosen window

ID	Color	Tvis	Тс	SHGC	U-factor	Peak Tvis
	appearance					
G1	Silver	0.361	0.37	0.476	5.538	400
G2	Clear	0.361	0.75	0.68	5.813	475
G3	Grey	0.272	0.28	0.281	3.222	510
G4	NA****	0.272	0.35	0.38	5.698	470
G5	Green	0.514	0.6	0.475	5.809	560
G6	Silver Grey	0.514	0.52	0.58	3.454	555
G7	Bronze	0.159	0.15	0.374	5.757	750
G8	NA	0.159	0.22	0.348	5.404	470
G9	Dark blue	0.2	0.12	0.503	5.834	780
G10	Silver	0.2	0.21	0.334	5.685	395
G11	Clear	0.234	0.11	0.703	5.818	780
G12	Grey	0.234	0.24	0.227	3.178	560
G13	Clear Low_E	0.844	0.83	0.794	5.821	630

Figure 3. SPD of chosen window

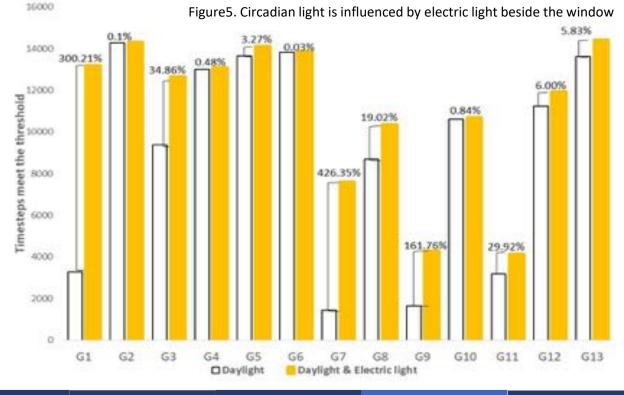
Source: LBNL Optics Tvis and Tc are the selection indicators

	Introductio	Previous Work	Methods	Result	Conclusion	06
--	-------------	---------------	---------	--------	------------	----

Finding: Circadian performance of windows

Figure 4. Performance of Windows in relation to circadian daylighting

As per WELL Standard_250 lux m-EDI from 9 a.m. until 1 p.m. [4]


20 100 60 40 20 40 80 0 60 80 100 G13 612 G11 G10 69 Windows with effective G8 Glazing ID *performance:* 67 G2, G4, G5, G12, G13 Gő 65 G4 Windows that G3 performances ineffectively: G2 G7, G9 G1 Percentage above and below the threshold Below Above Introductio **Previous Work** Methods Conclusion Result 07

Finding: Circadian performance of windows besides artificial lighting

Luminaires: TBS600 1x49W D7 TL5/840 HFP

Luminaire effectiveness to meet 75% of threshold: G1, G3

Luminaire inefficiency in enhancing window circadian performance: **G7, G9**

Introductio	Previous Work	Methods	Result	Conclusion	08
-------------	---------------	---------	--------	------------	----

Finding: Window properties as Circadian performance indicators

- Tvis > 0.5 meets thresholds
- Tvis<0.5, Tc represents the effectiveness
- Nonlinear correlation between Tc and window circadian performance

Figure6. Window's circadian performance regarding their Tvis and Tc

Conclusion

Circadian light is a new topic that needs further investigation and attention. This paper presents an analysis of the impact of the window on the circadian light entering the building. This research illustrates how various types of windows, even if they have a satisfactory Tvis level, might result in the use of artificial light to meet the shortage of windows for maintaining circadian health.

The Tvis or Tc values do not represent the accurate value for circadian light transmittance, and precise metrics for evaluating this value are required.

Introductio	Previous Work	Methods	Result	Conclusion	10
-------------	---------------	---------	--------	------------	----

References

- 1. K. Konis, "A novel circadian daylight metric for building design and evaluation," Building and Environment, vol. 113, pp. 22-38, 2017
- Hraska , J. (2015). Chronobiological aspects of green buildings daylighting. Renewable Energy, 73, 109-114. doi:http://dx.doi.org/10.1016/j.renene.2014.06.008
- 3. Hartman, J. H. (2022). Assessing Photopic and Melanopic Daylighting Performance of Special Glazing System: A Full-scale Experiments. Selected Scientific Papers - Journal of Civil Engineering, 17.
- 4. I. Acosta, M. Á. (2019). Daylighting design for healthy environments: Analysis of educational spaces for optimal circadian stimulus. Solar Energy, 193, 548-596.
- 5. I. Acosta, R. P. (2017). Analysis of circadian stimulus allowed by daylighting in hospital rooms. Lighting Research and Technology, 49, 49-61.
- 6. Circadian Lighting Design. (2022). Retrieved from WELL v2, Q4 2022: https://v2.wellcertified.com/en/wellv2/light/feature/3