• • • • • • • • • • •

Extracting Solar Visible and Infrared Irradiance Data from Typical Weather File for Solar Building Design and Simulation

Presenter: Chenshun Chen¹ Advisor: Dr. Julian Wang²

1 Ph.D. Candidate | Department of Architectural Engineering, Pennsylvania State University, USA 2 Associate Professor | Department of Architectural Engineering, Pennsylvania State University, USA

Typical Solar Analysis for building application:

Geographical and Site-Specific Data

- Geographical location
- Building orientation, topography
- Climate data

Building Information

- 3D model
- Materials used
- Window, shading devices

Analysis Tools

• Such as EnergyPlus, IES VE, Ladybug & Honeybee, etc.

Solar Devices Specifications

 For example, sizes, efficiency and cost of solar panels

What if solar devices are spectral-dependent?

Introduction

TMY3 data format

Field	Element	Unit or Range	Resolution	Description
1	Date	MM/DD/YYYY		Date of data record
2	Time	HH:MM	8	Time of data record (local standard time)
3	Hourly extraterrestrial radiation on a horizontal surface	Watt-hour per square meter	1 Wh/m ²	Amount of solar radiation received on a horizontal surface at the top of the atmosphere during the 60-minute period ending at the timestamp
4	Hourly extraterrestrial radiation normal to the sun	Watt-hour per square meter	1 Wh/m ²	Amount of solar radiation received on a surface normal to the sun at the top of the atmosphere during the 60- minute period ending at the timestamp
5	Global horizontal irradiance	Watt-hour per square meter	1 Wh/m ²	Total amount of direct and diffuse solar radiation received on a horizontal surface during the 60-minute period ending at the timestamp
6	Global horizontal irradiance source flag	1-2	-	See Table 1-4
7	Global horizontal irradiance uncertainty	Percent	1%	Uncertainty based on random and bias error estimates – see NSRDB User's Manual (Wilcox, 2007b)
8	Direct normal irradiance	Watt-hour per square meter	1 Wh/m²	Amount of solar radiation (modeled) received in a collimated beam on a surface normal to the sun during the 60- minute period ending at the timestamp
9	Direct normal irradiance source flag	1-2		See table 1-4
10	Direct normal irradiance uncertainty	Percent	1%	Uncertainty based on random and bias error estimates – see NSRDB User's Manual (Wilcox, 2007b)
11	Diffuse horizontal irradiance	Watt-hour per square meter	1 Wh/m ²	Amount of solar radiation received from the sky (excluding the solar disk) on a horizontal surface during the 60-minute period ending at the timestamp
12	Diffuse horizontal irradiance source flag	1-2	-	See Table 1-4
13	Diffuse horizontal irradiance uncertainty	Percent	1%	Uncertainty based on random and bias error estimates – see NSRDB User's Manual (Wilcox, 2007b)

Introduce narrowband solar components into weather files to perform modified building solar analysis

Consider such wavelength-selective transparent PV solar cell. It has a general PCE=0.4% and AVT=88.3% (measured under AM1.5 Solar Illuminator), by using conventional weather files, its spectralselectivity may not be fully considered and understood

• Existing tools

MODTRAN[®]

Advantage:

- Model flexibility
- Physically based
- Detailed spectral information

Limitation:

- Hard-to-get atmospheric factors
- Difficult to update realtime
- Model uncertainty

Ground-based measurement

Advantage:

- Direct measurement
- High accuracy

Limitation:

- Local variability
- High cost

NEURAL NETWORK

Machine Learning and Neural Network

Advantage:

- Ability to learn complex
 patterns
- Reducing the need for physical model
- High Efficiency

Limitation:

- Limited data source
- Hard to interpret
- Hard to generalize

Methodology

Data Collection:

- Weather dataset: Hourly Meteorological Measurements (HMM)³, from Jan 1, 2016, to December 31, 2019
- Solar spectral dataset: Spectral components in GHI collected from outdoor solar spectral data (WISER), in DNI collected from outdoor solar spectral data (PGS-100)⁴
- Other atmospherical parameters: AOD and PWV (GPS-based) from SRRL, NREL⁵⁻⁶

Data Processing:

- Basic predictors: GHI, DNI, DHI, cloud coverage, dry-bulb temperature, albedo, dewpoint, relative humidity, wind speed, precipitation, snow, AOD and PWV
- Newly added predictors: Extraterrestrial solar irradiance I₀, Solar zenith angle SZA, Clearness index K_t/K_b, Air mass AM, Cloud transmittance T_{cld}
- Targets: VIS (integrated over 400nm 700nm), NIR (integrated over 700nm max measurements range) in GHI and DNI

<u>Data Cleaning:</u>

- Criterion: (VIS & NIR > 0) && (VIS/GHI & NIR/GHI & VIS/DNI & NIR/DNI < 1) && (17.5° < SZA < 85.5°) && (VIS+NIR < GHI/DNI), etc..
- Results: There are 35,059 data entries in total. After the data cleaning process, the finalized dataset contains 11434 observations in total

In our Previous work, we used pruned regression tree to predict the fractions of VIS and NIR components within GHI⁷

Results

In this work, we compared different machine learning algorithms, and find the best-fit for predicting VIS and NIR value in DNI

Results

	VIS/DNI						
Model	Training				Testing		
	RMSE	MAE	R ²	RMSE	MAE	R ²	
Cost complexity tree	23.344	12.713	0.970	25.108	12.956	0.965	
M5' tree	19.272	9.725	0.980	19.916	9.690	0.978	
Random forest	17.433	9.208	0.983	19.144	9.318	0.980	
XGBoost	15.698	7.718	0.986	18.280	7.989	0.981	
	NIR/DNI						
Model	Training			Testing			
	RMSE	MAE	R ²	RMSE	MAE	R ²	
Cost complexity tree	24.622	16.575	0.982	26.161	16.907	0.979	
M5' tree	18.719	10.105	0.989	21.342	10.6917	0.986	
Random forest	17.549	9.500	0.990	19.942	9.7087	0.988	
XGBoost	15.627	7.805	0.992	18.390	8.011	0.990	

Results

We also tried to study the key features influencing the VIS and NIR within DNI, and these features' inter-correlations

Application

By integrating our GHI and DNI solar decomposing model, we are trying to build a web portal that could automatically process conventional weather files and turned them narrowband weather files (e.g., VIS/GHI column in replace of GHI column)

		×			EnergyPlus weather file converter		
Please select production in another file parameters	nodel based or year		Solar Decomposing A	DD			
PULL					Formatting .CSV file's header		
Enter Greature:			Choese a TMH file:		row (feature names should be		
			Cong and drop file here Unit 20080 per file-CDV	Browse files	the same)		
Enter langthade			Tubust.				
0.00	38-3		- 2007				
Evler Satikale					Upload the file to web, input		
0.00		•			location details		
					Download handled .CSV file, then use weather file converter again		
					to convert back to .EPW file		
			Fore with Streamity .				

Convert .EPW file into .CSV using

Applica

Wavelength (nm)

¥60

•••••

Reference

- 1. Myers, D. R., & Gueymard, C. A. (2004). *Description and availability of the SMARTS spectral model for photovoltaic applications* (Z. H. Kafafi & P. A. Lane, Eds.; p. 56). <u>https://doi.org/10.1117/12.555943</u>
- 2. Mauceri, S., Coddington, O., Lyles, D., & Pilewskie, P. (2019). Neural Network for Solar Irradiance Modeling (NN-SIM). *Solar Physics*, 294(11), 160. <u>https://doi.org/10.1007/s11207-019-1555-y</u>
- 3. SRRL BMS Daily Data. (n.d.). Retrieved July 21, 2023, from https://midcdmz.nrel.gov/apps/day.pl?BMS
- 4. *MIDC: SRRL BMS Outdoor Spectral Data*. (n.d.). Retrieved July 21, 2023, from https://midcdmz.nrel.gov/apps/spectra.pl?BMS
- 5. *MIDC: NREL Solar Radiation Research Laboratory (AOD)*. (n.d.). Retrieved July 21, 2023, from https://midcdmz.nrel.gov/apps/sitehome.pl?site=AODSRRL
- 6. *MIDC: NREL Solar Radiation Research Laboratory (GPS-based PWV)*. (n.d.). Retrieved July 21, 2023, from <u>https://midcdmz.nrel.gov/apps/sitehome.pl?site=PWVSRRL</u>
- 7. Duan, Q., Feng, Y., & Wang, J. (2021). Clustering of visible and infrared solar irradiance for solar architecture design and analysis. *Renewable Energy*, *165*, 668–677. <u>https://doi.org/10.1016/j.renene.2020.11.080</u>

• • • • • • • • • • •

Thank you!

