

August 2023 American Solar Energy Society Conference Boulder, CO

Local Residential Builds with National Impact

Jes Brossman National Renewable Energy Laboratory Paul Neumann University of Colorado Boulder Emmanuel Iddio University of Wyoming

Solar Decathlon Impact

21 Years of Excellence

WORKFORCE

DEVELOPMENT

INNOVATION

MARKET TRANSFORMATION

"Over the last two years of Solar Decathlon I was able to find a true passion and am forever grateful for it. It has made a profound impact on my life; I am so happy for everything I have learned and could have never imagined all the connections we would make."

"I aspire to use my learnings from Solar Decathlon to make a safe and sustainable built environment that makes our community more resilient to extreme climate events. **SD** is a great place of learning to find innovative ways to contribute to the community by promoting sustainable lifestyles."

- 2023 Build Challenge Students

Then: Solar Decathlon 2002...

COMPETITION MODEL

8 editions of a public showcase model held from 2002 to 2017.

PROGRAM OBJECTIVES

Create proving ground for residential solar and energy efficiency, while training future workforce.

REACH

Collegiate-level students only, with focus on traditional 4-year schools and programs.

EVENTS

Large, multi-week, public-facing temporary exhibits held at centralized locations, such as the National Mall.

3

...and Now: Evolution to 2023

COMPETITION MODEL

First **all-local build model** implemented for **2023 Build Challenge**, complementing ninth edition of design-only **2023 Design Challenge**.

PROGRAM OBJECTIVES

Provide a **proving ground for residential solar and energy efficiency**, while **training future workforce** to tackle **environmental justice** and the **climate impact** of **existing** residential and commercial buildings.

2023 Build Challenge

Community Zero Energy Building Solutions

5

Build Challenge Successes

- Student competition and a technology demonstration platform
- Provides opportunity for showcasing and incubating emerging technologies
- Enables deep involvement with builders and manufacturers
- Emphasizes community engagement

Normalizing Zero Energy Construction

- Transforming the market through contractor education and training the future workforce.
 - Students are involved in all aspects of construction while leveraging local contractors, trades, unions, and industry partners.
 - Teams introduce innovative technologies to their local workforce in an approachable and meaningful way.
- Bringing real and sustained impact to local communities.
 - Many teams partnered with Habitat for Humanity or other local housing organizations to create affordable housing solutions.
 - Every team has a long-term plan for the building, from selling the home on the market, to a rent-to-own model for a low-income family, to a living laboratory for research.

University of Colorado Boulder

Team Name: Spruce Canopy Build Location: Boulder, Colorado

The University of Colorado Boulder is building a highly efficiency and resilient 670 ft², carriage-style for an affordable housing community in north Boulder.

1st place in Durability and Resilience Contest 3rd place in Engineering Contest

University of Wyoming

1st place (tie) in Occupant Experience
1st place in Comfort and Environmental Quality
1st place (tie) in Energy Performance
3rd place in Embodied Environmental Impact

Team Name: Wind River Build Location: Fremont County, Wyoming

Using reclaimed wood from a 2020 wildfire, this 2,460 ft² home is an example of sustainable, single-family housing in rural Wyoming.

Thank you

Catch us all at the Students On Sustainability : Young Professionals Program on Friday

Poster on Solar Decathlon Design Challenge

Jes Brossman, jes.brossman@nrel.gov

The Canopy Energy Independence On The Front Range

Solar Decathlon university of colorado boulder student organizations

Project Intro - CU Solar Decathlon

- Approximately 20 engineering and environmental design students
- Project began with Flatirons Habitat For Humanity & City of Boulder on Ponderosa Stabilization Plan

Goals

Improvement & Low-Impact to:

Community

Environment

Moving Past Net-Zero Energy

Diversified Energy Storage

To Build an Energy Independent Home...

- 1. High Performance & Air-Tight Envelope
- 2. A Way To Manage & Control Loads
- 3. Excess Renewable Generation
- 4. <u>Flexible & Diversified</u> Energy Storage

Flexible Energy

Rooftop Solar Array

Green Hydrogen

ElektrikGreen FireFly

ElektrikGreen

Seasonal Storage

Opportunity For Waste-Heat

Seasonal Energy Storage

Share of Energy in High Performance Homes¹

Thermal Storage

PCM Thermal Battery

- Lower Cost than Electric
 Storage
- Sponge for excess energy storing <u>Heat</u>, rather than electricity
- Combines benefits of tankless and tanked water heaters
- Compact, inside envelope
- Adds Hot Water Resiliency

SUNAMP

Phase Change Material

- 800 SF [PCM Sheets] = ~16kWh
- Intercepts & Stores Heat

- **Direct-To-**1 Home **Hydrogen Production** (2)
- **Thermal Battery** 3
- PCM in Walls

4

[Day] (4) PCM in Walls Heat Pump

- 1 <u>Direct-To-</u> <u>Home</u> 2 <u>Hydrogen Production</u>
- 3 Thermal Battery
- 4 PCM in Walls
- 5 EV Charging

- Direct-To-
HomeHydrogen Production
- 3 Thermal Battery
- 4 PCM in Walls
- 5 EV Charging
- 6 <u>To Utility</u> <u>Grid</u>

Habitat

ElektrikGreen

GLENN FRANK ENGINEERING, INC.

https://www.cubouldersolardecathlon.com **Contact: Paul.Neumann@colorado.edu**

University of Wyoming

UWYO WIND RIVER

WIND RIVER WYOMING

Pre-Design Approach

- 'Spec' home: Builder as client
- Market-ready design
 - Typical 3-BR 2.5-BA program
 - "Minimal Mountain Modern" style
- Emphasis on Constructability
 - Standard wood framing
 - Off-the-shelf equipment
- Site and Climate
 - Cold climate (Zone 6B- Dry)
 - Very good solar resource
 - Supports Passive and Active solar

Design Process

Spring|2021 10 students

ARCHITECTURE | Design Process

Between 2021–2022 9 students; all new

Between 2022–2023 10 students; 7 new

MINIMAL MOUNTAIN MODERN DESIGN

Form: Roofs

North slope: creates tall south wall for passive

South slope: For PV

ARCHITECTURE | Form

Double-height and Loft Spaces

Form: Passive Solar and Shading

Example of Operable Shading on Front Porch

Natural lighting and passive heating

Form: Passive Solar and Shadin

House rotated 15 degrees Southeast to optimize solar gain

0.25 ACH – Tightest Envelope in WY! $T_{indoor_avg.} = 64 \,^{\circ}F @ T_{outdoor_avg.} = 27 \,^{\circ}F$ with no active heating! Annual Energy Production: 23,600 kWh Annual Energy Consumption: 17,500 kWh Average CO₂ levels <1000 ppm with 10 occupants for 3 hours!

Passive Performance: 4/6 – 4/8/202

Zone and Outdoor Air Temperatures and Swings for Passive Performance Contest Passive Zone Temperatures and Upper and Lower Adaptive Comfort Range

Net Positive!

17,500 kWh

Annual Energy Use

23,600 kWh Annual Energy Production

Energy Profile

21 panels

required to operate the house (Net-zero on an annual basis)

3 panels

EV charging; 2 vehicles

8 panels Surplus energy production

Passive Solar Heating

<u>----</u>

Retractable porch shade

West windows - Retractable Exterior Blinds

Energy Plus simulation

Build Challenge Overall Winners

The Alley House is a 1,350 ft² duplex built with a community development corporation on a vacant infill lot and aims to address gentrification pressure and promote neighborhood revitalization.

Solar Decathion

SOLAR

50

Build Challenge Overall Winners

Team SHUNYA, meaning "zero" in Hindi, built a 1,416 ft² zero energy house with advanced technology solutions for a family in a growing city to help address air quality in a hot and humid climate.

2nd Place: Indian Institute of Technology Bombay

SOLAR

SESIDENTIAL SRAND WINNER 51

Build Challenge Overall Winners

3rd Place: University of British Columbia

Third Quadrant Design, named after the negative quadrant of the carbon-energy coordinate plane, built a 1,220 ft² structure located on the university campus that will provide experiential and research-based learning on zero-emissions, regenerative, and climate resilient design.

Build

SOLAR

RESIDENTIAL GRAND WINNER