## Accelerated GHG Reduction with Electrification of Domestic Water

Proven technology for the residential market.

# Residential water heating is 25-30% of the total amount of energy consumed.

- Gas fired appliances are not going to be considered in this discussion. Natural gas fired storage tanks are currently the cheapest means of water heating.
- The highest performing choices are Heat Pump Water Heaters (HPWH) or Solar Water Heaters.
- Both HPWH and SWH have slow recovery times and see improved performance with larger storage volumes that allow for thermal stratification of the tank.
- HPWH technology was developed in 1935 and has ebbed and flowed based on electricity rates.

#### Heat Pump Water Heaters

- Most common are the hybrid variety which utilize a heat pump attached directly to the tank with electric resistance elements as backup.
- Electric resistance elements within the tank are utilized during times that the heat pump can not provide enough hot water from a large draw or when the ambient air is below 45°F or over 120°F.
- Energy Star suggest 1000 cubic feet of surrounding air or 12'x12' for peak performance. NREL found in a 2016 study 10-16% reduced efficiency in confined space.
- According to Flagstaff Research HPWH require an additional 1KW of PV to offset the increased electricity.

#### Heat Pump Water Heaters

- The Coefficient of Performance (COP) for most units is 2-3 meaning for one unit of energy consumed by the compressor 2-3 units of energy are put into the water. At \$0.10/KWH units will cost \$33.50 per month to operate.
- The expected life for a HPWH is 15 years and the refrigerants need to be recovered properly. EPA licensing is required to recover refrigerants.
- Flagstaff Research study saw 81% GHG reduction.
- The only EWH's with Energy Star Ratings are HPWH's.

#### Flagstaff Research Assessment of GHG Reduction Technologies for Water Heating Electrification in California

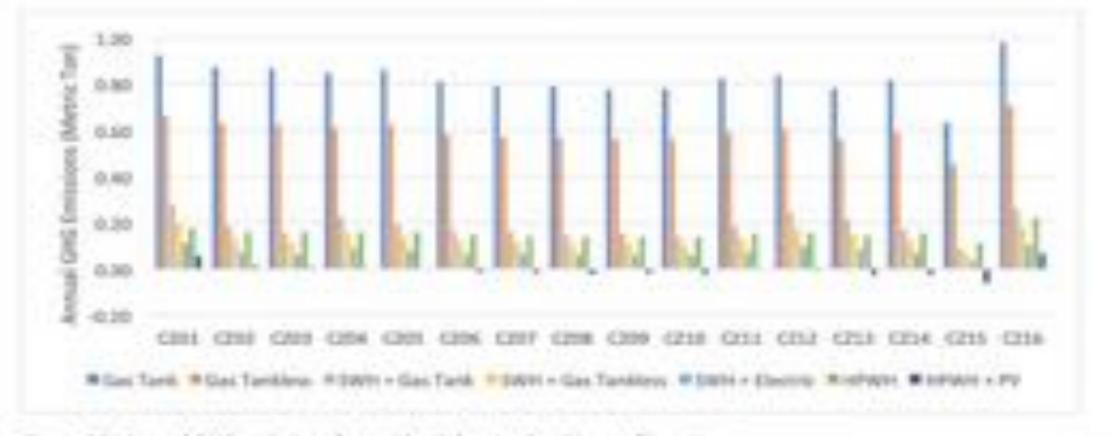



Figure 29. Annual GNG emissions for residential water heating configurations.

#### Solar Water Heaters

- Solar thermal collectors have been in operation since the late 1800's with many variations to capture the sun's energy.
  Popularity is closely tied to energy cost and subsidies.
- Modern systems often utilize small circulators that provide for incredible Coefficients of Performance between 20-30 meaning for every unit of energy used by the system 20-30 units of hot water.
- SWH on average will cost \$10/month to operate with an electrical rate of \$0.10/KWH.
- Cali study saw 90-91% GHG reduction

#### Solar Water Heaters

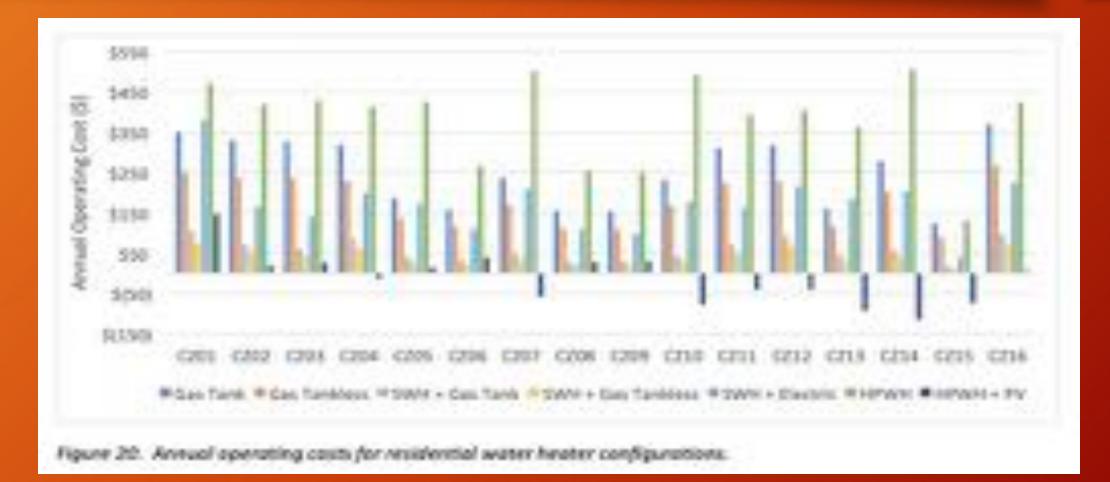
- Collectors are often mounted on the roof, piping is routed through the home, controls are rarely plug and play requiring skilled labor.
- Solar storage tanks have an expected life of 15 years and collectors of at least 25 years.
- SWH often achieve temperatures over 140°F killing legionella bacteria.
- Installed cost for SWH ranges from \$5,00 -\$10,000.

### Superior Performance of SWH

#### Solar Thermal System Configuration:

- 946.6 ft<sup>2</sup> of collector array.
- 800 gallon of solar storage.
- 3 x Grundfos UPS 26-150 Pumps.
- Resol DeltaSol MX Controller.

#### Monitoring:


- Pump electrical usage: Shark 100 kWh meter.
- Energy calculation: Spire TMAG BTU meter.

System Performance:

- Solar loop run time: 4,180 hours
- Total Pump Energy Consumption: 112 therms
- Total Solar Production: 2,690 therms

• System COP = 
$$\frac{2,690}{112}$$
 = 24.02

## Operating Cost for Residential DHW in California



## Future Now - Multi Energy Tanks

- Multi Energy Thermal Storage Tanks will allow for Heat Pumps, Solar Thermal, Biomass, PV to integrate with each other.
- Onsite consumption shortens ROI time line for PV



## Actions for Impelemantion

- Skilled trades people are needed and programs that provide work/learn pathways with an applied science science approach.
- Partnering with stake holders to strengthen codes through ICC/IAPMO.
- Standardization of ratings for HPWH and SWH to allow for easier consumer decision process.
- Domestic production or easier importation of multi-energy storage devices.
- Consumer education.

#### Sources:

- Assessment of GHG Reduction Technologies for Water Heating Electrification in California , J.R. Plaisted – Flagstaff Research November 2020
- <u>https://www.energystar.gov/products/high\_efficiency\_electric\_st</u> orage\_water\_heaters/considerations
- NREL, Field Performance of Heat Pump Water Heaters in the Northeast

Carl Shapiro and Srikanth Puttagunta, *Consortium for Advanced Residential Buildings,* February 2016

Sunearth presentation on Pressurized or Unpressurized Solar Thermal Systems.